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A formulation of the kinetic theory of dilute, classical polyatomic gases is given which 
parallels the Waldmann development for structureless molecules. In the first section 
the Boltzmann equation is written in terms of the specific rates of inelastic collision 
processes and then the properties of these rates and those of the corresponding collision 
cross sections are examined. The dependence of the distribution function on the 
dynamical variables is discussed and the equations of change for the gas are derived. 
Finally, a study is made of the properties of the linearized Boltzmann collision operation. 
In the second section the Boltzmann equation is deduced from a rigorous statistical- 
mechanical point of view and discussed in terms of the basic ideas of Bogoliubov. The 
computationally important special case of impulsive interactions is then considered. 

KEY W O R D S :  Boltzmann equation for polyatomic gases; transition rates for polyatomic 
molecules; differential cross sections for polyatomic molecules; free-flight invariants; 
symmetries of collision operator; external field effects on gas transport and relaxation; 
time scales (for evolution of statistical ensembles); Liouville equation (for polyatomic 
gases); collision integrals. 

1. I N T R O D U C T I O N  

The last two decades has been a period of significant growth for the kinetic theory of 

polyatomic gases. It  was initiated by Grad ' s  m investigation of the statistical mechanics 

of systems with internal  degrees of freedom, t ransformed into a quanti tat ive tool 
by Curtiss '~2) development  of the classical kinetic theory of rigid nonspherical  
molecules, and nourished by W a l d m a n n ' s  c3) and Snider 's c4) independent  derivations 

of a rigorous quan tum kinetic equat ion for polyatomic species. With in  this same 
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interval Mason and Monchick (5~ tested, amended, and generalized the semiquantal 
theory of Wang Chang and Uhlenbeck, (6~ while Kagan and Afanas'ev (7~ and Dahler 
and his co-workers (s,sa~ performed a similar service with regard to Curtiss' classical 
theory. Finally, there has been an explosive growth of activity stimulated by 
Beenakker's ~9~ studies of responses to external magnetic and electric fields which are 
specific to polyatomic gases. 

Indeed, so much has been learned that it is now possible to place the kinetic 
theory of polyatomic gases on as firm a foundation as that which underlies the theory 
of  monatomic species. Yet, most studies have been devoted to specific models and 
no general, systematic examination of the structure of the classical Boltzmann 
equation has appeared. It is the purpose of the present paper to remedy this. 

A cataloging of the properties of the Boltzmann equation for structureless 
molecular species has been presented in very elegant form by Waldmann. (~~ The 
second section of this paper is an attempt to extend his approach to polyatomic 
species. The third section is devoted to an examination of the formal statistical- 
mechanical basis of the Boltzmann equation and also to the establishment of the 
relationship between the general theory and that for species which interact impul- 
sively. 

2. P H E N O M E N O L O G I C A L  T H E O R Y  
O F  T H E  B O L T Z M A N N  E Q U A T I O N  

We consider a gas so dilute that the vast majority of the collisional events which 
occur can be treated as isolated binary encounters. These collisions involve pairs of 
molecules in states which we assume to be uncorrelated--the assumption of"molecular  
chaos"--pr ior  to their mutual interaction and the associated scattering event. Under 
these circumstances the macroscopic state of the fluid can be characterized wholly 
in terms of single-particle fields and the microstate can be described fully by the set 
of singlet distribution functions specific to the various chemical species. In particular, 
f~ is the density at time t and at the point x of molecules of type ~ in the dynamical 
state (e, I), which includes the velocity e of the molecular center of mass and the 
coordinates and conjugate momenta I which are descriptive of the molecule's internal 
degrees of freedom. The variables I are selected to be canonical, so that we later 
can invoke the conservation of extension in phase which is appropriate to variables 
of this sort. For  the moment we leave unanswered the interesting and important 
question of how these internal-state variables are to be chosen. Frequently we shall 
employ the contracted notation f~(txi) or simply f~(i) in place of the more explicit 
L(txe~IO. 

The basic postulate of the Boltzmann theory is that these distribution functions 
are governed by the set of kinetic equations 

~ + el "~x-x + ~.1 " f~(1) -1- [f~(1), 3(~v~(1)] = ~f~(1) (1) 

where [u, v] denotes the Poisson bracket of the two functions u and v and where 
~ ( 1 )  is that portion of the single-particle Hamiltonian which depends exclusively 
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upon the molecular internal degrees of freedom. Finally, l,~zL'~) stands for the external 
force per unit mass and 

~f~(1) : Z S/f dl' d2' d2 [w~(12R I l '2'R)f<(l')f~(2') 
s~ 

--  w~,~(l'2'R l l2R)  f , (1)  f~(2)] (2) 

with di = d3c~ dIi and where dI~ is the differential element of extension in the phase 
space associated with the internal degrees of freedom. The quantity w~(12R J l '2'R) 
is the specific rate (unit concentrations in the reactant states and unit extension in 
the space of final states) of the binary collision process (l~'2~'R)--+ (lfi~R). Here, 
the symbol R refers to a value of the intermolecular separation which is of the order of, 
but somewhat greater than, the effective range of the intermolecular forces. Since 
some of the internal-state variables (phases of vibrational modes and orientation 
of molecular axes) vary rapidly even when the molecules are in free flight, the introduc- 
tion of this reference separation R is essential if the transition rate w~e(l'2'R I 12R) 
is to be well defined. 

Implicit in our formulation of the Boltzmann equations (2) is the assumption 
that the durations and spatial extensions of the collisonal events which cause these 
transitions can be ignored. This assumption manifests itself here through the 
appearance in (2) of distribution functions f,(1), f~(2), f~(l'), and f~(2'), all of  which 
are to be evaluated at the same instant and at a single space point. 

According to these Boltzmann equations, the evolution of the singlet distribution 
functions is a first-order Markov process. The randomizing events which are respon- 
sible for this stochastic behavior are collisions among the molecules. Therefore, 
it is t , ,  the duration of a collision, and co/, the frequency with which these collisions 
occurs, which fix the time scale of definition for the distribution functions. This 
means that there is an intrinsic lower limit to the time resolution of the events which 
contribute to the Boltzmann equation. Stated somewhat differently, the distribution 
functions to which the Boltzmann equations pertain are not instantaneous densities, 
but averages over a time which is greater than the duration of an individual collision 
but less than the interval which elapses between successive collisions. These functions 
contain no information whatsoever about fluctuations with frequencies in excess 
of t; -z. To be somewhat more precise, let us for the moment assume that the inter- 
molecular forces have a finite range R. At the low densities to which the Boltzmann 
equations apply the free path length As = 1/nR 2 may be a hundred or a thousand 
times greater than R itself. Therefore, the interval between successive collisions, 
the so-called free-path transit time, t s = co}- 1 = As/~ = Asl(8kTl~rm) x12, exceeds the 
duration of a collision, 6 ~ R/~, by several orders of magnitude. Since we have 
assumed that the distribution functions of the Boltzmann equations do not change 
significantly in a period of the order of  t~ ( ~  tf), neither will they vary over distances 
of the order of g6 ~ R. This argument establishes the internal consistency of our 
assignment of the same time and place coordinates to each of the singlet distribution 
functions of (2). Later we shall see that similar considerations permit us to determine 
the dependence of the distribution function upon the coordinates which describe 
the internal degrees of freedom. 
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2.1. The Properties of w~p(12R [ 1'2'R) 

The properties of the transition-rate matrix w are determined completely by 
the dynamics of binary encounters. From its definition as a transition rate it follows 
that w~e(12R I l '2'R) must be real and nonnegative. Furthermore, it is obvious that 
these rate coefficients must be such that w~,~(12Rtl'2'R)= w~,(21RI2'I'R). In 
addition to these there are other constraints upon the transition rates: 

(1) If these rates are to exhibit Galilean invariance, then w~o(12R I l '2'R) can 
depend upon the particle velocities only in the combinations e2a ( ~  c~ -- Cl), c~1, 
and G -- G', where G = (rn~cl + rn~c2)/(m~, + m~) is the velocity of the center of 
mass of the pair. (Later we shall see that there are other, more subtle restrictions 
which arise from the requirements of rotational invariance.) 

(2) Conservation of linear momentum demands that w be diagonal with respect 
to the total (pair) momentum, i.e., that w~(12 I 1'2') be proportional to the Dirac 
delta function g~(G -- G'). 

(3) Conservation of energy implies that w is proportional to 

~I(EI~ @ E2~ -- EI~, - -  E~B, ), with Ei, = (1/2) m,ci 2 + e,(i) 

and where % is the energy associated with the internal degrees of freedom of a 
:e-species molecule. 

(4) The assumption of "point collisions" implies that the only dependence 
of w upon x is that due to variation of the transition rate with the local value of 
the external field strength. 

(5) Molecular systems exhibit parity and time-reversal invariance. Therefore, 
w~(12 I 1'2') = w~(Pl/52 ]/51' P2') and w~e(12 I 1'2') ~ w~B(2~l' ~2 ' i  T1 T2), where 
t5 and 7 ~ are the parity and time-reversal operators. 

(6) As a consequence of time-reversal invariance, the transition rate satisfies 
the condition, 

i f  dl' d2' w~B(12 ] 1 ' 2 ' ) =  f f  dl' d2' w~e(l'2' [ 12) (3) 

of "bilateral normalization. ' 'al) 
There can be little question about the first four of these conditions but the fifth 
and sixth deserve further comment: 

T i m e - R e v e r s a l  Invar iance .  Consider a mechanical event a--+ b. Define a 
state 2r'a which differs from a only in that the algebraic signs of all velocities are 
opposite to those of a. (If there is a magnetic field, then its sign is also to be reversed.) 
The equations of motion for a conservative system are such that when the algebraic 
signs of the velocities are reversed, the motions are reversed, i.e., the events of a 
sequence are unaltered, but their order of occurrence is reversed. Hence, the specific 
rate of the process a -+ b is identical to that of 2Pb ~ 5~a, or wr(b L a) = W,~e(7"a I Tb). 
Here the subscript F refers to an external field and TF to its time-reversed image 
(TE ---- E, 7'H = --H).  
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Parity or Reflection Invariance. The state /3a is the image of a seen in a 
mirror. It differs from a in that every polar vector contained in a is replaced with its 
negative. Axial vectors (for example, the "vector product" of two polar vectors) 
are unaltered by reflection. It is obvious that the conventional laws of mechanics 
ensure the equality of rate of the process a---> b and that of its mirrored image 
Pa--~Pb. Therefore, w(al b ) =  w(/~a] Pb) or, more specifically, w~(12[ 1 ' 2 ' ) =  
w~(Pl t32] P l '  P2'). 

Bilateral Normalization. A "complete set" of states {b} is one for which 
the associated fractional occupations (or occupational probabilities) p(b) satisfy 
the condition ,[ db p(b) = 1. If {b} is complete, then so also is {5~b}. Therefore, 

If we now replace Tb with the label b, then we must simultaneously replace the 
related state Ta with (T)-ITa : a and the field TF with F. Hence, 

f db we(b [ a) = f db wr(a [ b) 

The condition of bilateral normalization permits us to rewrite the Boltzmann 
equations (2) in the more familiar forms 

aoj:(1) = Z f f f a2 w  (leR , 
B 

(4) 

Rotational Invariance. We have examined the consequences of parity and 
of time-reversal invariance. The first of these symmetry conditions is essential to 
the proof of the Curie principle; the second leads to the Onsager relations and to 
the demonstration that the coefficients of viscosity, thermal conductivity, and 
diffusion are positive-definite. 3 The remaining symmetries to be investigated are 
those associated with rotation. The approach we adopt is patterned after that used 
with parity and time reversal. In the case of parity we compared an event a --* b 
with its mirror image Pa ~ Pb and concluded that the corresponding specific rates 
must be equal. With time reversal we compared an event a -+  b to the "playback" 
Tb--* Ta wherein the sequence of states was reversed and each velocity replaced 
with its negative. Then, since there was no experience to the contrary (in atomic 
and molecular physics), we demanded that the specific rates of these two processes 
be equal. A similar argument is relied upon in the case of rotational invariance. 
We imagine that a scattering event has been recorded by two observors who are 
attached to coordinate frames which are related to one another by a rigid rotation. 
The assertion of rotational invariance is that the description of the event is the same 

3 See (b) and (c), (e), and (a), respectively, of the subsection, "Symmetry Conditions and Bracket 
Integrals," p. 539. 
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in one frame as in the other. Stated a bit differently, we compare an event a---> b 
to another, /~a--->/)b, wherein each variable is measured relative to a set of axes 
which are rotated with respect to those used in the description of a --> b. Rotational 
invariance then implies the equality of the specific rates w(b I a) and w(/)b I/~a). 

2.2. Scattering Cross Sections 

The transition rate w~(12 I 1'2') is closely related to the differential cross section 
Z~e(c'II'I~' --~ cIlI.2) for scattering from a beam with the relative velocity c' = e2' -- el' 
into a final state with the relative velocity c = c2 -- c l .  To establish the exact nature 
of this relationship, we have only to recall the definition of the cross section. Imagine, 
first, a uniform beam of fi-species molecules, each in the state Iz' and each moving 
with the same velocity e' relative to an s-species molecule which is at rest and in the 
state 11'. (Here it must be understood that the beam consists of molecules which are 
in the state I2' at the instant when their centers of mass pierce a sphere of radius R 
centered on the target particle. Despite the impossibility of producing such a beam, 
it does offer some theoretical advantages which we wish to exploit before we focus 
our attention upon cross sections which correspond to physically accessible condi- 
tions.) The beam is assumed to be of unit concentration, that is, it contains one 
/~-species particle per unit volume. Therefore, the current density of the beam is 
numerically equal to e': A collection device which subtends an element of solid 
angle d~g is positioned in the direction g from the target particle. The current of 
]~-species particles which is collected by this device will be proportional to d2g and 
to c'. The coefficient of proportionality for that portion of the current associated 
with collisions which result in the final relative velocity c and the final states I1 and I~ 
is the differential cross section Z'~.  Therefore, we conclude that 

w~(12 [ 1'2') dacl d~c2 dI1 dL. ~- c '~(c ' I1 ' I2 '  ---> eIlI2) d2e dI1 dis (5) 

Because energy and momentum are conserved in a collision, both was and 
Z~  must be proportional to 3~(G -- G') 3z(E~z + E~ -- E~z, -- EB2'). Therefore, it is 
convenient to extract the delta-function singularities from Z'~ and introduce the 
differential cross section ~s  = 27~/[8a(G --  G') d3G 8I(E--  E') dE] which is defined only 
on the energy-momentum shell. Here E = _ol-tz~c ' + e~ + e~ and ix~ --  m~m~/(rn~ + rnB) 
is the reduced mass of the colliding pair. In terms of the differential cross section a~ B 
the relationship (5) becomes 

w~(12 I 1'2') d3c~ d~c2 : c ' g ~ ( c ' I i '  h '  ---> cI~I2) d ~  3a(G -- G') d3G 31(E --  E') dE (6) 

Then, since d3Cl dac2 = d3c daG = (c/ix~) d2g dE daG, it follows that 

w~s(12 ] 1'2') = l~(c ' / c )  cs~B(c'I~'I 2' --+ Cilia) ~a(G -- G') 3~(E -- E') (7) 

and, furthermore, that the Boltzmann equations (4) can be written in the form 

f "'" f d~c ' d~c~ dI,' d i e ' d i  e 0~f~(1) 
B 

• {(c'~/c) a~(e'I~'I~' ~ clxI~)[f~(l') f~(2') -- s  fi(2)]}eo (8) 
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where the subscript EG indicates that the primed and unprimed states share common 
values of  energy and momentum. 

As a consequence of time-reversal invariance and parity, the differential cross 
sections satisfy the condition 

t 2 / t # # c ~ C c ,  4 ,  I~' ~ c, 4 ,  l~) ~ = c ~MT{c, I1 ,  I~)) - -  2{c', I 1 , 5 3 )  

= c~cr~B(c, TPI1, TPI2 --+ c', T#I~', :PPI() 
(9) 

which is commonly referred to as microreversibility. 

C o n s t r u c t i o n  of w.a and o . p .  Let us suppose that a particular collision occurs 
at t ~--- O, that at that instant the separation of the molecular centers of  mass is a 
minimum. The duration of the collision tc is the length of time that the molecules lie 
within the effective range of their mutual interaction. We assume that this interaction 
has a very limited range. Therefore, the trajectory descriptive of  the relative motion 
of  the mass centers of  the colliding molecules consists of two rectilinear segments, 

r<(t )  : b' + c't, t < a 

r>(t) = b + et, t > +~tcl 

and a short connective path which passes through the region in space where the 
collision actually occurs. 

The vectors b'  and b (which are perpendicular to c' and c, respectively) are 
called the pre- and postcollisional " impact  parameters." The vector b' is the value 
which the vector separation of the two molecules would assume at the instant (t ----- 0) 
of  closest approach if there were no intermolecular forces: b is a similarly defined 
parameter associated with the time-reversed image of the dynamical trajectory. 

Now, prior to collision the relative orbital angular momentum of the pair is 
given by 

i' = r<(t) x p'  = b' X p', t < --�89 

where p'  = /,~ec'. After the collision has occurred the angular momentum of the 
relative motion is equal to 

l : r > ( t )  x p : b  x p, t > +�89 

Conservation of angular momentum implies that i + L1 + L2 : l' + LI '  + L (  
where L~ is the "spin" or rotational angular momentum of molecule i. Then, since 
l' : b' x p' and b : p-2p x !, we see that b is related to the primed variables through 
the formula 

b : p-~p x [1' + (Lz' - -  L1) + (L(  - -  L2)] 

: p-2p x [b' x p' + (Lz' --  L1) + (L~' - -  L~)] 

where p2 : p,2 + 2/~,~[{~(I1') - -  E~(I1)} + {~(I2') -- E,(Lz)}]. 
We now denote by Z the ensemble density associated with the steadystate 

scattering experiment described previously. This function must be that solu- 
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tion of the two-particle Liouville equation, [Z, H ~s)] = 0, which satisfies the 
boundary condition Z(1, 2) =- 8(1' -- 1) 8(2' -- 2) on the "precollision hemisphere" 
{I xsl ] = R; xsl �9 c~1 <: 0). Here H (s) is the Hamiltonian function for a system of 
two interacting molecules and ~(i' -- i) =-- ~(c1' -- c() 8(I~' -- Iz). Now a dynamical 
trajectory which emerges from the collision sphere in the state (12b, R) is connected 
to a unique state (l*2*b*, R) on the precollision hemisphere. Therefore, since the 
values of the ensemble density are propagated along the characteristic curves 
(dynamical trajectories) of the Liouville equation, the desired solution of that 
equation assumes the form Z(1, 2) =- 8(1' -- 1") 5(2' -- 2*) on the "postcollision 
hemisphere." The current density of scattered molecular pairs with impact parameters 
in the range (b, db) is c dSb. Consequently, w~(12R I 1'2'R), the specific rate at which 
pairs of molecules are scattered from the initial (primed) into the final (unprimed) 
states is equal to 

w ~ ( 1 2 R  I I '2 'R)  = ~ d2b e Z  = ~ dSb e 8(1' -- 1") 8(2' -- 2") (10) 
, /  d 

By comparing this result with (7) and recalling that 3 3 ( e ( -  c1")83(c2 ' -  cs*) = 
( l ~ / c )  8s(~' - -  ~*) 3~(G --  G') 81(E -- E'), we conclude that 

~B(c ' I I ' I s 'R --> c IJ2R)  = (c/c') s f dSb 3s(~' - -  ~*) ~(I1' - -  I~*) 3(I  s' - -  Is* ) (11) 

Because of time-reversal invariance, it is possible to express the transition rate 
and differential cross section in the alternate forms 

and 

w~(12R I l '2'R) = f dSb ' e' 5(1 -- 1") 5(2 -- 2*) (12) 

C 

~ ( c ' I 1 ' I 2 ' R  -+ cIiI2R) -= J d2b ' 82(~ - -  e*) 3(11 - -  11") 8(I~ --  I2") (13) 

where the asterisks refer to the unique final state on the postcollisional hemisphere 
which evolves from the initial state (c1', I1', cs',/2', b', R). The cross section, as 
expressed by (13), can be identified with the area in the precollision W-plane which 
scatters into unit solid angle about the direction ~. By changing the variables of 
integration from b' to ~* (and exercising care if b' is not a single-valued function of ~*), 
we obtain the relationship 

cr~e(e'Ii'I2'R -+ cI l IsR)  = I ~(b')/e(e*)ia.=~ 3(11 -- 11") 8(12 -- Is*) (14) 

between the differential cross section and the Jacobian of the transformation from 
b' to ~*. 

Finally, as a consequence of parity and time-reversal invariance it can 
be shown that to each event (b', p', I1', Lz') --+ (b, p, I1, Is) there corresponds 
the unique event ('PPb, ~Pp, "['PI1, ~Pls) - -+ (J'Pb', TPp' ,  T~II ' ,  TPls ' )  or 
(--b,  p, T P I 1 ,  TPls)  -+ (--b' ,  p', TPlI' ,  TPIs'). The algebraic signs of the impact 
parameters and of the angular momenta and axial orientations are opposite in the 
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"direct" and "~PP-imaged" events: if the direct collision changes the relative 
momentum from p' to p, then the ~PP-imaged collision causes scattering from p to p'; 
if the direct collision changes the spins LI' and L2' to L~ and L~, respectively, then 
the ~PP-imaged process is accompanied by transitions from --Lz and --L2 to --L~' 
and --L2'. 

2.3.  Free.Flight I n v a r i a n t s  

The transition rates and cross sections of the previous sections depend upon 
some variables whose values are not normally monitored in scattering experiments. 
For  example, in the case of a rotor, one certainly is interested in collisional alterations 
of the molecular spin angular momentum, but one is neither concerned with nor 
able to measure molecular orientation. Also, when vibrations are involved it is the 
energy and not the phase of the motion which is of interest. Now the cross sections 
which are experimentally accessible are, in some sense, averages over the unmonitored 
variables and, as we shall see, it is precisely these averaged cross sections which are 
of importance in kinetic theory. 

Much of what concerns us here is dependent upon the precise nature of the 
internal-state variables I~. Thus far we have made no specific demands upon these 
variables other than to stipulate that they consist of generalized coordinates and 
the associated conjugate momenta. However, it is clear that we should choose these 
variables so that they separate into two categories, those which can and those which 
cannot be monitored in real scattering experiments. The former are "free-flight 
invariants," that is, variables whose values remain constant (in the absence of external 
fields) during the intervals between successive molecular collisions. This confronts us 
with the problems of determining the number of these free-flight invariants and of  
establishing a physical interpretation for each. There are no general, unqualified 
answers to these questions. However, it is possible to answer both provided that 
the Hamiltonian function (and/or the associated Hamilton-Jacobi equation) for 
the internal degrees of fi'eedom of a single molecule is separable in some coordinate 
system. For, when this is so the motion of each conjugate coordinate-momentum 
pair (qs, Ps) will be periodic and the associated action variable Js = ~p~ dq~ (being 
equal to the phase volume enclosed within one orbit) will be a constant of the motion 
that is, a free-flight invariant. 

It is possible for some of the frequencies associated with these n action 
variables to be degenerate, in which case there will exist m ~ n -- 1 linearly inde- 
pendent commensurability relationships, X~akioJi = O, with k =  1 ..... m. Here 
~ ~ (~(J1 "'" J ,~ )=-#Y f (J1  "'" J,)/~J~ is the frequency associated with one of the 
separable modes, r is the angle conjugate to the momentum J~, and the coefficients 
aki are integers. As a consequence of this degeneracy one is able to replace the original 
set of angle variables, {r ; i = 1 ..... n}, with a set {q~i' = ZJ a~;q~-, i = 1,..., m; 
r162 i = m + 1 .... , n} which includes m angle variables each of which is of zero 
frequency and so identifiable as a constant of the free-flight motion. The Hamiltonian 
function for the internal degrees of freedom is dependent only upon those transformed 
action variables J j ,  i = m + 1 ..... n, for which the corresponding frequencies w~' = r 
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are different from zero. Each commensurability relationship implies existence of a 
simply periodic motion in a two- or higher-dimensional subspace of the coordinates 
qs ; s = i,..., n. For example, if two frequencies co~ and co~ are commensurable, then 
the orbit in the q~qt-plane is closed; if these frequencies are incommensurable, the 
orbit densely fills a portion of this plane. 

There are a few systems of special importance which deserve individual attention. 
In the case of a rigid, symmetric top the usual choices of coordinates and momenta 
are the Euter angles 0, ~, ~b and the corresponding momenta Po, P~ ,P~.  It is 
convenient to select these angles so that ~ measures the precession of the (major) 
symmetry axis of the inertial ellipsoid about the fixed direction of L, the rotational 
angular momentum, that 0 is the angle between this symmetry axis and L, and that ~b 
is the angle between the line of nodes and one of the degenerate principle axes of 
the inertial ellipsoid. The frequencies associated with these rotational coordinates are 
coo = 0, co, = I L 1/27rF, and co s = (KI27r)(I "-1 -- p,-1). Here, K ( ~  L cos 0) is the 
component of angular momentum along the symmetry axis of the inertial ellipsoid, 
F is the principle moment of inertia about the symmetry axis, and / "  the doubly- 
degenerate principle moment. Since the latter two of these frequencies are in no way 
related, there is only one commensurability relationship and so only four independent 
free-flight invariants. Although the choice of these four invariants is somewhat 
arbitrary, it is natural and convenient to select K/L =~ cos 0 (or alternatively, K) 
and the three components of L measured along the axes of a space-fixed frame. 
In the case of a spherical top (/ '--> f " )  the frequency ~o~ is equal to zero, and so there 
are five free-flight invariants. The additional invariant can be chosen equal to ~b. 
In both of these cases it is natural to select q~, cos 0, ~b, and L as variables instead 
o f  the canonical set of Euler angles and conjugate momenta. It is readily established 
that dI = dO d(o d~b dpo dp~ dp~ = d(cos O) dd? d~b dSL and that for this choice of 
variables (1) becomes 

~ )  ~ L ]  + K(F-1 - -  ; ' - 1 )  ~ + . , ~  �9 L(1)  = a . L 0 )  

where N~I ) is the external torque on a molecule of species c~. An analysis of this same 
sort is not strictly applicable to the asymmetric top because in that case there is no 
separable coordinate system. However, it is readily established that there are four 
free-flight invariants associated with an asymmetric top, the three components of L 
and the rotational energy. 

One free-flight invariant can be associated with each pure vibrational mode. 
If  this invariant is selected to be the vibrational energy, then the associated angle 
variable is the phase of the vibrational motion. When two vibrational frequencies 
are degenerate, there will be an additional constant of the motion. For  example, 
in the case of a linear triatomic molecule with two degenerate bending modes this 
constant can be identified with the phase difference between the vibrations in and out 
of  the plane of L and the molecular axis. Although such invariants are usually of 
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limited importance in kinetic theory, we shall retain them along with the others and 
then later indicate how they can be eliminated from the formalism. 

The previous considerations now permit us to be rather specific concerning 
the types of variables which fall into the category of free-flight invariants and those 
which do not. Thus, we assume that the canonical variables I can be separated into 
a set of invariants J consisting of action variables and of angles with zero frequencies, 
and a set ~/consisting of angle variables which vary linearly with time. The frequencies 
associated with the members of the set r/ are typically of the order of 10 ~ sec -~ or 
greater. 

We have mentioned previously that the distribution function of the Boltzmann 
equation is the average over an interval of time which is long compared to the duration 
of a collision, but less than the interval between successive collisions. From this we 
concluded that the Boltzmann distribution function was independent of variations 
which occur with frequencies in excess of the collision frequency col ~ 10 9 sec-L 
Since the frequencies of the ~ variables are greater than col we must assume that 
the Boltzmann distribution function is independent of these variables, i.e., that 

f~(txcI) -+ (1/A~) F~(txeJ)  

where A~ = f d~ 7. 
Then, to determine the collisional rate of change of F~(txexJl)--~ F~(txT) we 

integrate (4) over the range of the variables ~h and obtain 

8eF~(txi) =- Z fff d~, d2' d2 w~,B(12 [ ]".2')[F~(]-') Fo(2.') - -  F , ( I )  F~(2)] (15) 

with i ----- (c~, ~ ) ,  di = d3c~ dJ~, and 

l = f f f f dw dW' dV;  = (12R I W'R) (16) 

This transition rate and the corresponding differential cross section, 

f ;  = f f f f d711 t d,7]2t o-c~B(C'll'I2tR --+ CIl[2R ) 
(17) 

are defined in terms of the unweighted averages over initial and final values of the 
variables ~7i of  the rate of scattering of ]3-species molecules in the state J2'  by a-species 
molecules in the state Ja' .  Thus, if Z '  is the solution of the steady-state Liouville 
equation [Z', H (2)] = 0 which satisfies the precollision boundary condition Z'(1, 2) = 
(A~A~)-13(P - 1) 8 (2 ' - - 2 ) ,  then the specific rate of  the scattering process 
( e ' ~ ' ~ ' )  -+ (eoCrl#r is given by 

w~B(12 [ i '2 '  ) = (1/A~ AB) JJf f d~ h d~ h f dZb eZ' 

in agreement with (16). It is important to recognize that w~(1211'2'), unlike 
w~(12R ] l '2'R), is independent of the value of the parameter R. 
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To prove this, we have only to note that 

-? ~ [ c' ' ]I w~o(12RI l '2'R) = 0 

where the sums extend over all angle variables with nonzero frequencies, that is, 
over all variables included in the sets ~h and ~72 �9 Because of the simple relationships 
between the two pairs of functions, it is obvious that the phase-averaged transition 
rate and differential cross section exhibit the same symmetry and invariance properties 
as do w~(12R [ l '2 'R) and cr~(e'Ii'I~'R ---> elII2R). 

By way of illustration, let us again examine the symmetric top. For convenience 
we replace the canonical set of action-angle variables with J = (L, K) and ~7 = (~b, ~). 
The Jacobian of this transformation is equal to L -x and A = (27r) ~. Furthermore, 
in order to simulate a situation which is commonly encountered, let us assume the 
molecular interactions are such that the axial components of angular momentum 
are collisional invariants, i.e., that 

= e ' L  'a a (K1 - -  K I ' )  a ( G  - -  G ' )  w~B(T] [ 1'2') w~o(ClL 1 , c2Lz [ ca'L:(, ~ 2 s 

Under these circumstances the distribution in K is unaltered by collisions. In practice 
this distribution will be sharp, so that F~(txeLK) is of the form F~(txeL) ~(K -- K,). 
For example, if ~ denotes a diatomic species in a / 7  electronic state, K~ will be equal 
to h. If K~ were equal to zero, the theory would be descriptive of the 2: electronic 
state of a diatomic species. Whichever the case, it follows from (15) that the collisional 
rate of change of  F~(T) ~ F~(tXelL1) will be given by 

(18) 

where ~ = (el, Li) and d~ = d3ci dZLi/L~. 
Now that we recognize how the functional dependence of the Boltzmann 

distribution function is regulated by the approximations implicit in the assumed 
form of the collisional term, we must perform a corresponding modification upon 
the "left-hand side" of the Boltzmann equation. In particular, we replace f~(txl) 
with F~(txT)(1/A~) in (1) and integrate over the range of ~1 to obtain 

(a, + ,:~ �9 ~a + -~1~(~) -a~-~ ) F~(txT) + [~(t,a) ~,(1)] = a~F~(txi) (19) 

Here a bar above a function denotes its average over the ~7 variables. Due to the defini- 
tion of these variables, the average of [F~, ~ ]  willvanish unless there is a dependence 
of  the internal-state Hamiltonian ~ upon an external field. For  example, in the 
dipole approximation the interaction of a molecule with an electric or magnetic field 
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is given by --~ �9 F, where F ( =  E or H) is the local intensity of  the external field. 
Corresponding to this term in ~ is the contribution 

[go(i) x F .  (elOL0] F~(txi) 

to the average of [F~, ~r 
Let us suppose that the molecules are symmetric tops and that each has an 

electric dipole moment of magnitude /x o directed along its symmetry axis. It then 
follows that 

= /~0[[, cos 0 + 1s sin 0 cos q~ + l~l sin 0 sin ~] 

where f~ = L/L, ~I, and i~l form an orthonormal set of vectors. Therefore, 

g = [1/(2rr) 2] f f  d~b dq~ t* = /xoL  cos O = v(K, L)L 

where y(K, L) = fxoK/L 2 is the gyroelectric ratio. 
It is often assumed that the magnetic dipole moment of a symmetric-top molecule 

can be separated into the sum of an axial moment /x  r which is associated with the 
axial component of electronic orbital and spin angular momentum, and a moment 
of magnitude /x R which is perpendicular to the symmetry axis and which has its 
origin in the gross rotational motion of the nuclei and electrons. According to this 
model, 

= t~K[f~ cos 0 + 1s sin 0 cos ~ + l~l sin 0 sin ~] 

+/~R[f~ sin 0 -- M cos 0 cos q~ -- l~l cos 0 sin q~] 

and ~ = (t~x cos 0 + / x  R sin 0)L. The moments /~r  and/~R are usually written in the 
forms /x x = gxfiK/h and ~R = g R f i n u c (  L 2  - -  K2)Z/2/h, where/3 = eh/2m~c and/~nuc = 

eh/2mvc denote the Bohr and nuclear magnetons and where gx and gR are, respectively, 
the axial and rotational "g-factors." Since 13 is so much greater than ]3nue, it is an 
excellent approximation to set the average moment equal to (gKfiK2/L2)L whenever 
K :/: 0; when K is equal to zero we conclude that ~ = gR]~nueL. (The quantum analogs 
of these results are obtained by replacing the momenta K and L with hK and 
h[L(L + 1)] 1/2, respectively.) 

2.4. Equations of Change and Entropy Production 

We introduce the symbol n~(~)~ = fdiF~(-f)~b(i) for the ensemble average 
of  a single-particle field ~b(i) = ~b(ea, J l ) .  Provided that ~b is independent of t and x, 
it then can be proved that 

~(n~(~>~) + v �9 [u(nS~)~) + n~(C~>] - n~ Uc" (F(~)~) -- n~([~, ~1~.~.> 
C~ 

= ac(n~<~)) (20) 
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where (by an appeal to bilateral normalization) 

~ ~ f f f f  ~ d2 cll' d2' w~(i '2'  I i2)F~(f)  F~(2)[r -- r (21) 

and 

x ~ [ r  + ~ , (~ ' )  - r  - r (22) 

For example, with ~b~ = m~ we obtain from (20)-(22) the component and summed 
continuity equations 8,p~ 4- V �9 (p~u~) = 0 and 8~p + V �9 (pu) = 0 with p~ = n~(m~)~, 
p~u~ -- n~(m~c)~, p = 52~ p~, and pu = ~2~ p~u~. In an analogous fashion we deduce 
the component and summed momentum balance relationships 

8~(p=u~) + V �9 [p~(uu= + u~u - -  uu) + p~] -- p~F~ (~) = ~ p~r~ (23) 
B 

and 

pd~u= - - V . p + p F  (~) (d~= 8 ~ + u ' V )  (24) 

where p~ = n~(m~CC)~, with C = e -- u, is the contribution of the species e~ to 
the pressure tensor p = ~]~ p~ and where 

is the interspecies frictional force. Finally, the equation of change for the "internal 
energy" e = p-1 ~,~ n~(�89 2 + E~)~ is found to be 

p d ~ e = - - V ' Q - -  p : V u - - ~ n ~ V ~ . F ( ~  ) (26) 
c~ 

where V~ = u s - -  u is the diffusion velocity of species a and where 
Q = ~ n~(C(�89 2 + E~))~ is the diffusive flux of energy. 

It is usual to identify the entropy density of a dilute gas with the functional 
s(tx) p-Xk ~ n~(1 -- log F~)~ of the singlet distribution functions. The variations 
of this density are governed by the equation p d~s = - - V  .J~ + g ~ ,  where 
J~ = k Z~ n~(C(1 -- log F~))~ is the flux and 

g~ = k Z f d l  [1 -- log F~(-1-)I 0~F~(i) 
c~ 

• log{F~g') F~(2')/F~(i) F~(2)} F~($) F~(2) 
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the homogeneous rate of entropy production. To obtain the third line of this sequence 
from the second we have invoked the property of bilateral normalization and the fact 
that wM�92 i '2') = w~(2i 1 2'i'). By adding the expression 

o : f f f f  di di' w~(l'2' ] 12)[F~(l')FB(]' ) - -  F ~ ( ] ' ) F ~ ( 2 ) ]  

to g~ we obtain 

x [{F~(i') F~(2')/F~(1) FB(2)} -- 1 -- log{F~(i') Ft~(2')/F~(i) F,(2)] 

Then, since ~/(x) = x -- 1 -- log x is greater than zero for x > 0, it follows that g, 
must be nonnegative. Furthermore, since ~(x) vanishes if and only if x = 1, we 
conclude that the rate of entropy production is zero only when F~(i ' )F~(2')= 
F~(i) Fe(2 ) for every pair of states (i2) and (i'2') for which w~(l'2' [ i-2) is nonzero 
These equations can be satisfied only if the logarithm of the distribution function 
is a linear combination of the binary invariants, mass, momentum, and energy. 
The distribution function which satisfies these constraints is characteristic of a state 
of local equilibrium and can be written in the form 

1 
~ : n~o(m~/2zrkTo)a/2 z21 exp I-- kfo  [2 m~(cl- u~ + e~(1)]l (27) 

Fl  

where z~(To) = ~d~el exp[--q(jl)/kTo] is the classical partition function associated 
with the internal degrees of freedom. 

The values of the coefficients n~o, To, and u0 are arbitrary. Without loss of 
generality we can set them equal to the local values assumed by the concentration, 
temperature, and fluid velocity, that is, to n~(tx), T(tx), and u(tx) respectively. 

2.5. Linearization of the Boltzmann Equation 

We now write the distribution functions in the form F~(i) = ~ + q~(1)], 
where ~ is a measure of the system's displacement from the state described by 
the Maxwell-Boltzmann distribution ~ Then, if the condition of the gas is 
sufficiently near to this local state of reference, we can neglect quadratic terms in ~b 
and conclude from (15) that 

0oF~(i)  ~ - -  ~ n~ne['~)(q b) (28) 

where the linear operators f~~ are so defined that 

= f f f  ai '  d2' d2 ~ [1'2') 

x [e~ ( i )  + e~(2) - e~ ( i ' )  - e~(2') ]  (29) 
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Properties of the Integral O p e r a t o r  F. We begin our investigation of the 
operators /~ by restricting our attention to a single-component gas. As a first step 
in this direction we rewrite (29) in the familiar Fredholm form 

n~I'~(O) = K(~ 0(1) + f d2 K(f. m) 0(2) (30) 

Here the function K m~ and the kernel K are given by the formulas 

: ( i )  - f f f d~' d2' ~ ~ ~ w(~2 B l'2') ( 3 0  

and 

Ka, j) -- f f f  ,~. d~. d2 ~ ~ w(12 ] T'2')[3(2 - j) - ~(]" - ]) - ~(2' - ])] 
(32) 

where 8(~ --1) = Sa(ci -- cj) S(Ji  -- ~:). 
The adjoint of the (real) operator _P is denoted by -P* and defined so that 

I d l  ~b(i)/~(4) = f d i  4(i)/~+(~b) for all functions ~b and 4 within the ranges of 
the two operators. By straightforward manipulations (and invoking bilateral normal- 
ization and energy and momentum conservation), one can prove the term-for-term 
equality of the two expressions 

,: f .i :(~) r:4) = f f f f d1.2 dl' d2' ~176 1Y'2') 

• ~( i ) [4( i )  + 4(2) - 4 ( i 3  - 4(~')] 

= f f f f  dl d2 dl' d2' ~176 

• 4(i)[r + r - r - 4(~')] 

and so establish that 

, ~P~ , (~ )  = fff al ,  d2' d2 ~ ~ w(i '~' i i~)[~(~) + ~(~) -- ~ ( i ' )  --  ~(~')] 
(33) 

= K(~ 6( i )  + f d2 K*(i, 2) 4(2) 

where K* differs from K of (32) in that w(12 ] i'2') is replaced with w(i'2' L i2). 
We now wish to prove that K*(1, 2) = K(2, i). From the definition (32) 

K(:, ~) = f f ~'  d2'~176 i rm') - f f .2' ~ ~ ~ w(y21m 

- f f  al, d2 ~176 w(j21~'i) 

and 

K'a, j)-= f f ell' d2' ~ ~ w~'2' ]]-])- f f d~' d2 ~ ~ w(]2' ] 12) 

-- f f dl' d2 ~ ~ w(l'] [im) 
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By invoking the properties of bilateral normalization and energy and momentum 
conservation [in the form ~ ~ w(T2, I 1'2') = ~ ~ w(12] 1'2')], one can 
establish the term-by-term equality of these two expressions and thereby achieve our 
objective. 

Next we apply the parity operator to (29) and obtain 

P{n2fl(~b)} = fff dl'  d2' d2 ~ ~ w(/5i 2 [ 1-'2') 

x [ r  + r - r  - r 

= f f f  d(Pi') d(P~') d(P2) ~ ~ w(Pi P2J #i' P2') 

x D ( P i )  + r  - r  - r  

= fff dl' d2' d2 ~ ~ w(12 I 1'2') 

x D ( P i )  + r  - r  - r  

From this it follows tha t / s  and f" commute, i.e., that P/~ = f 'P  or, more explicitly, 
P{/~(~b)} ~- f'(PqS). An identical procedure can be used to prove that _P commutes 
with the rotation operator/~. Furthermore, one can establish that ~ f '  = / ~ t ~  and so 
conclude that T and /~  commute if and only i f /~  is self-adjoint, that is, i f /~l  = /~ .  
It is not difficult to discover when this will be so, for there clearly exists a one-to-one 
correspondence between the adjointness of /~  and the symmetry of w. Furthermore 
an analogous relationship exists between the symmetry of w and that of the kernel K. 
When TPJ~ = o,r _P is self-adjoint and w and K are symmetric. This is the case 
whenever the species are structureless or whenever the molecular interactions are 
such that no internal variables are collisionally altered. However, we generally 
can expect/~ to be self-adjoint only if the set J is limited to variables with positive 
TP eigenvalues, e.g., true scalars such as L 2, p2, and (L - p)2. 

When w is symmetric it is said that "detailed balancing" prevails, that the 
specific rate of each "elementary process" is precisely equal to that of its inverse. 
From the H-theorem we know already that this detailed balancing is not essential 
to the maintenance of dynamic equilibrium. Let us now suppose that one has selected 
a transition rate matrix w. Then, there may exist circumstances under which it is 
reasonable to replace this matrix with its symmetric part, i.e., to replace each element 
w(T2 1 1'2') with the corresponding quantity 

wlSym)(i2 [ i'2- ') ~ �89 [ T'2') + w(l'2' I 12)1 = w(sym)(T'2' [ 12) (34) 

To help in our search for conditions which might justify this replacement, we recall 
that w(l'2' [ 12 )=  w(~PPT TP2[TPi '  TP2'), where TPe----e. Thus, wlSy m) is the 
transition rate matrix appropriate to situations for which the states (e, J )  and 
(e, TO J )  can be assigned equal a priori probabilities. For example, under these 
circumstances the distribution function for a gas of symmetric-top molecules must be 
such that F(i) = F(txelLiK1) is equal to F(txe 1 -- L1K1), or equivalently, F(1) must be 
an even function of LI .  

82211/4--2 
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There are significant differences between this "nonpolar" ensemble and the 
"'isotropic" ensemble for which the appropriate transition-rate matrix is given by 

w'i ~ l = f f f f dL, dL= dLl' dL; w(X= l (3S) 

Here, for simplicity, we have assumed that [, = L/L is the only dynamical variable 
with a negative 2r/~ eigenvalue. Since w(12 [ 1'2') = w(~'Pi' 5vP2 ' I ~/'Pi TP2), it then 
follows that wCiSo)(T2 I 1'2 ') = w(iS~ t T2), a condition which Watanabe m) has 
termed "averaged balance." 

By adopting the nonpolar ensemble, one forfeits all chance of accounting for 
phenomena which depend upon a preferential direction of molecular rotation. 
The nonpolar ensemble restricts the distribution function to a ray dependence upon 
the angular distribution of molecular spin. The isotropic ensemble admits no depen- 
dence whatsoever upon this variable. For example, the isotropic distribution function 
can depend upon L only through the rotational energy ~(J) .  

One may, of course, expand the "ignorable" set 7/ to include variables from 
the set J in which he has no interest or which he has judged to be of less importance 
than others. The/~ operators associated with the diminished set of free-flight invariants 
will be self-adjoint if TPJ~  = j ~  for every variable belonging to the set. 

Symmetry Conditions and Bracket Integrals. There is considerable signific- 
ance and several practical consequences of determining the set of operators which 
commute with 20. Thus, the Galilean (rotational) invariance of w ensures us that 
the eigenfunctions of i 0 can be classified according to the irreducible representations 
of  the group of rotations in three space. Furthermore, the commutability of P and 20 
implies that these eigenfunctions also can be assigned definite parities. Finally, 
if 202?" == ~20, the eigenfunctions of 20 can be selected to be eigenfunctions of  the 
time-reversal operator as well. 

The symmetry considerations have an important bearing upon the properties 
of  the "bracket integrals," 

[4, ~b] = nZ(ff, 20(~b)) ~ n ~ f d i  ~b(i) 20z(~b) (36) 

to  which the various transport and relaxation coefficients are related. In the theory 
of  these coefficients one also encounters the related integrals [q~; ~b], which differ 
from the corresponding quantities [4, ~b] in that the integrands ~(i) 201(X) of (36) 
are replaced with ~(i) �9 20(X). Integrals of this second variety are defined only for 
pairs of functions ~b and X both of which are tensors of the same rank. The symbol 

" 20(X) is understood to mean the appropriate scalar product, with tensor contrac- 
tions formed in accordance with the "nesting convention" of Chapman and Cowling, 
e.g., e~. 20(4) ---- Z ,  ~b,P(r •. 20(~) = Z ,  Z ,  r etc. 

As consequences of the properties of w it can be proved that: 

(a) [4; q~*] >~ 0 for all functions 4. The equality obtains if and only if r is a 
binary invariant. The symbol ~b* here denotes the tensor with components 
( ~ ' i ' ) i j . . . n m  = q~nm. . .~ ' i  �9 
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And for tensor components r and r 

(b) [r r = 0 if the parities of ~ and r differ. 

(c) [~, r = 0 if r and ~b are components of tensors which transform as basis 
elements belonging to different irreducible representations of the rotation 
group. 

(d) [~, X] = T~T*[x, r where T~ is the time-reversal eigenvalue of X- Further- 
fore, if _P is self-adjoint (as it is for structureless molecules), then 
[r ~b] = [~b, r and so this integral is different from zero only if T, = T~. 

(e) [q~, X] = j~J,[~b, r where ~ and Sr are the time-reversal eigenvalues of 
_P(r and _P(r respectively. 

(f) [r r = 0 if either or both of r and r is a binary invariant. 

In several of these statements it is implied that one is dealing exclusively with 
eigenfunctions of 2P and/or of P. This is always possible to arrange, since an arbitrary 
function F can be uniquely decomposed into the sum of two functions �89 + P)F 
and �89 -- P)F, which are eigenfunctions of 16 with eigenvalues + 1 and --1, respec- 
tively. An analogous argument applies to the operator 2P. 

As an illustration, let us suppose that ~ = L. Then, for each choice of positive 
integers Jl and J2 one can construct the set of 2J  + 1 functions 

Shj2jM(~, L) = ~ ~ fjlj2mzma t JM) Yhm'(c) ^ Y~m~(L) 

which satisfy the orthogonality conditions 

Here Jcan  be any integer within the interval (jl + .]2, l Jl -- J2 I), M any integer within 
( J , - - J ) ,  and (jlj2mlm2lJM) is the familiar vector coupling coefficient (see, for 
example, EdmondslZ21). The parity of SjdjM is (-- 1)h ; its time-reversal eigenvalue is 
( -  

Let us define the action of the rotation R upon the function ~b(e, L) to be 
/?r L ) =  r L'), where (c, L) and (c', L'), respectively, are the velocities and 
angular momenta measured in the original and rotated frames. Thus, e' = H(apy)e, 
where the elements of the orthogonal matrix I are dependent upon-the values of 
the Euler angles ~, fi, and y used to parametrize the rotation. The functions SqjjM 
transform in the manner 

= = n j_s  nS, , L) L') Z M'M( SY) L) 
M '  

and so form a basis for the (2J + 1)-dimensional irreducible representation D s of  
the rotation group. The specific properties of the representation coefficients D~,M 
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are of no particular interest to us here. What is important is the fact that we can select 
the eigenfunctions of /~  (_PS.., = VS..,) to have the form 

L) = E L) L) 
J2 

The parity of &is function is (-- 1)h but it is not an eigenfunction of i v. 
In general, /~ will not be self-adjoint, and so eigenfunctions of this operator 

belonging to different eigenvalues are not orthogonal, that is, the integral 

= f f  d3c 3 - 1 .  ," Sh,s,M,,, ] d L L S~ISMe(C, L) IPt(Sh','M'," ) 

y d c c  2 d L L ~  * = ' ahj2s~,(c , L) ahhsv,(e , L) ~ss' ~MM' ~ j l J l  ' 
o J2 

will not vanish for ~, =/= ~,'. It is obvious how these considerations and conclusions 
would be modified if one were to introduce the (statistical) approximation of a 
nonpolar or isotropic ensemble. 

Generalization to Gas Mixture. To extend our considerations to a gas 
mixture, we interpret n~nolP (~1 to be the (c~/?)-component of an operator n2[ ' and 
identify q~ with the c~-component of a "composition vector." The inner product of 
two composition vectors, �9 and ~ ,  is defined in obvious analogy with (36) by the 
"brace integral" 

{qS, T} --= (4, n2/'(T)) ~ Z ~ n~no f d-1 r (37) 

We then introduce the adjoint of 2P through the relationship (r = (7 t,/%(~)). 
This operator is found to differ from /" of (29) in that the functions w~8(i2 [ i '2') 
are everywhere replaced with the corresponding functions w~B(i'2' I i2). If  there is an 
inverse to each collisional event, then these two functions are equal and /~ is self- 
adjoint. 

By a straightforward extension of our previous considerations, one verifies that 
the brace integrals satisfy all of the conditions (a)-(f). 

3. D E D U C T I O N  OF T H E  B O L T Z M A N N  E Q U A T I O N  
FROM T H E  L I O U V I L L E  E Q U A T I O N  

Now that the phenomenological theory of the Boltzmann equation has been 
developed in considerable detail we address ourselves to the task of deriving this 
equation from something more fundamental. Although the approach we adopt is 
also applicable to the derivation of other kinetic equations (less restricted by the 
densities for which they are valid or subject to stochastic approximations less severe 
than that of molecular chaos), our considerations here shall be confined to the 
Boltzmann equation. To minimize notational complexity, we confine our attention 
to a single-component gas. (The generalization to a gas mixture offers no new concep- 
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tual or theoretical difficulties.) We denote by f(N) the generic density function on the 
space of the conjugate variables appropriate to a gas of N identical polyatomic 
molecules. Since there are no sources or sinks of members of the ensemble represen- 
tative of this system, f(u) satisfies the continuity (Liouville) equation 

~f(N) ~. [f(N), H(N)] = 0 (38) 

where 

[4, H (~)] = ~, ~ ( ~ r  
r (N) ~q9 ~H(N). 

Z- - )  (39) 
,=1,.=, ~q~, 0p,, bp,, ~ <  

is the Poisson bracket of r and of the Hamiltonian function H (N) for the N-particle 
system. Here q~ and P~B denote the conjugate coordinate and momentum associated 
with the/7 degree of freedom of molecule i. 

We assume H (m to be the sum ~i  H~ I) + ~ ZJ>i V~s of single-particle functions 
H~ (I) and of pair interactions V.is. Consequently, the set of reduced distribution 
functions 

f(") = [N!/(N -- n)!] f dX,+, "" f dX,~f (N) (40) 

are governed by the BBGKY hierarchy of coupled equations, 

~ l ~ f ( n ) - } - [ f ( n ) ' H ( n ) ]  = i = I B = I  ~ ~ f dYn+l li~(f(n+l> ~Vina-ll ~ '  ' -- ~ ~ (f(n+l' ~Vin+llf ~ i, 
(41) 

In (40) and (41) the symbol dX~ (=--I~ dq~ dpi~) denotes the differential element 
in the v-dimensional phase space of molecule i. Although it is reasonable to assume 
that the pair potential V~j is independent of the particle momenta, p~ = m e i  and 
ps = rues, we do not exclude the possibility of dependence upon the momenta 
conjugate to the internal coordinates. This permits more flexibility in the choice of 
the variables I~. For example, let us suppose that the interaction appropriate to 
two rigid rotors can be expressed fully in terms ofx~ ( ~  x~ -- x~-) and the unit vectors 
ei and es directed along the molecular symmetry axes. One can then choose for 
internal coordinates the polar spherical angles (0~ and r of e~ ; the associated pair 
of conjugate momenta are Po, and p ~ .  The function V;j clearly is independent of 
these momenta. However, one might prefer a description in terms of the action-angle 
variables of the rotors. The generalized momenta are then Li and L ~ ,  the magnitude 
and z-projection of the rotational angular momentum Li. The coordinate conjugate 
to Li~ is the angle which locates the position of the line of nodes in the plane perpen- 
dicular to the space-fixed z axis. The conjugate of L~ = ! L~ [ is the angle between 
the lines of nodes and e~. With this choice of coordinates e~, and hence V~, is a 
function of L~ULi as well as of both angular variables. 

For a system with a Hamiltonian of the form we have assumed the macroscopic 
properties of interest can be computed from a knowledge of the singlet and pair 
distribution functions, f m  and f(2). In fact, at the low densities which are of specific 
concern to us here the singlet distribution function alone is of importance. Now, 
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a moment's reflection should serve to recall that implicit in much of what we said 
and did in the previous section was the assumption that the concentrations measured 
by the Boltzmann distribution functions f~ and F~ did not include molecules which 
were in the midst of collisional encounters. Thus, we identifiedf~ with the concentra- 
tion of a-species molecules which were, in some vaguely defined sense, isolated 
from other molecules. This suggests that it is not the usual singlet distribution of  
statistical mechanics which we can expect to satisfy the Boltzmann equation, but 
rather a function such as 

(42) 

where the function ~J,i assumes the value zero whenever the center of mass o f j  lies 
within a convex region a~.j = a({qt ,pi}; {q~ ,pj}) surrounding molecule i and is 
otherwise equal to unity. This new function can be expressed in terms of the 
set {f(~)} as follows~: 

f(1)(1) = f(1)(1) -- o QI,~ dX2f(~)(12) @ �89 o Qz~ dX2 f dXaf(3)(123) . . . .  
, 0"1,3 

(43) 
: Z [(--1)q~/n !] f dX2 "''f dXqz+lf(n+l) 

7Z ~0 O1,2 171 ,n+l 

Although this would appear to be an infinite series, it does in fact truncate 
after a finite number of terms. Thus, for any realistic choice of the intermolecular 
forces only a limited number of molecules can be fitted within the region a. The 
physical interpretation of the series is clear: the first term is just the molecule density, 
the second term subtracts from this the number of paired molecules, the third corrects 
for the counting of pairs which are imbedded within molecular trios, etc. As the 
density tends to zero any difference between f (a) and f(Z) can be attributed exclusively 
to the formation of bound pairs, trimers, and the like. Although it is not essential, 
we henceforth assume that no such aggregates exist. 

The equation of change f o r f  (1) can be obtained directly from the definition (42) 
or by summing the sequence of equations (4I) as indicated by (43). The former 
procedure is more direct. We multiply (38) by (NE1), with ~1--~ 1-[~'>~2 ~J.z, and 
integrate to obtain 

i 

~>z 

Distribution functions of this sort have been used previously by Grad aa) and O'Toole and Dahler.(14~ 
The present development closely resembles the treatment by the latter of the Boltzmann equation 
for structureless species. 
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This can  be reduced to the form 

Or f(1)(1) + If(I)(1), /-/1( 1)] --  f ax2f(2)(12)[~2a, 11(11) + 11(21)] 

= --N f dX2"'" f dXN 31[ f  (m, V] (44) 

with V = ~ > i  V~j and where 
i 

(45) 
= f(2)(12) -- _ fo~ dXzf(z)(123) + ... 

is the pair density conditioned by the requirement that no particle lie within the 
region ~ , j  about molecule 1. 

Let us assume that the linear dimensions of the region ~ exceed the range of 
the intermolecular forces, or equivalently, that ~-z V~ = 0 for all states of the two 
molecules 1 andj .  As a consequence of this assumption (or restriction), the right-hand 
side of  (44) vanishes (it is equal to the rate of change of the number of molecules 
in the set 2, 3 ..... N, caused by their mutual interactions) and we obtain 

with 

Oj(~)(1) + If(i)(1), 91( ~)] = ~f(~)(1) (46) 

= f ax2 f(2)(lz) 

and where ~2,1 = [~2,1, H~ ~) + H~)] �9 The right-hand side of (46) is the net rate of 
flow across the boundaries of or, that is, the net rate at which molecules "break free" 
(at the surface of or) into the state 1. 

The space of the center-of-mass variable x2 can be spanned by a sequence of 
surfaces which are geometrically similar to the surface of cr1,2 and scaled by a 
parameter p (for more details, see Curtiss and Dahler(15)). Thus, the location of 
the center of mass of molecule 2, relative to that of  molecule 1, can be given in terms 
of  p and the surface normal k, with p specifying the convex surface on which the 
mass center lies and k giving its position on this surface. When p = 1 the center of  
mass of 2 lies on the surface of cq,~ and therefore ~2,~ = ~7(P -- 1), where ~ is the unit 
s t e p  function. It follows that ~2,1 = 3 ( p -  1)t5. In terms of these coordinates 
d~xz = p~h dp d~S, where d2S is the differential surface element of era. ~ and ph = X2x " k. 
Thus,  

0~f(1) = f d2 f d~S 15hf(Z)(12) (47) 

Furthermore, 15h can be identified as the normal component k �9 g of the velocity g 
of  the center of mass of molecule 2 relative to the point of contact on (r~, 2 . For  
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present purposes we restrict our attention to the very simplest case and select for cr 
a sphere whose radius is equal to the range R of the intermolecular forces. It then 
follows that deS = R e deh, ph = xe, , ph == h " eel, and 

e,f(1) = R e f d2 f d~h (fi- Cel)[f(2)(12)]~l=n (48) 

where fi = x~,/xe, and ce, = c2 -- c , .  
It should be noted that both (41) and (46) can be interpreted as continuity 

equations in the appropriate phase spaces. Thus, the BBGKY hierarchy (41) can be 
cast into the form 

8t f  (") + l-~qio (~izf (n)) -Jc (f~f('~)) ---- 0 
i = 1  B = l  

where the "velocities" ~ and b~e are the values of qi~ and 2/ii~ averaged in an n-particle 
aggregate, that is, 

Op~----~- + f dX.+, f("+*) eV~'"+* 
~P~B 

and 

f(~)~ = _f(~) ~H (~) f dX.,+,f(~+,) OV~.~+z 
8qiz ~q~B 

Equation (46) has a similar interpretation, but since f(1)  is the distribution function 
for "isolated" molecules, 

~i~ ----- 8H(1)/SPi~ and ~i~ ~ --~H(*)/Oqi~ 

in this case. Furthermore, since the number of isolated molecules is not a constant, 
we must include source and sink terms. These, taken together, give the net rate at 
which molecules flow inward across the surface e, namely, i 'd2 f deS(k �9 g)f(e). 
This result is in accord with (47). 

To this point all is rigorous, but to complete the reduction to the Boltzmann 
equation, one must introduce approximations which, however well founded, do not 
fall into the category of mathematical identities. To provide motivation for these 
approxiffmtions, we shall rely upon Bogoliubov's description of the approach to 
equilibrium. (is) Although many others contributed to the development of the concept, 
it was he who stressed the importance of recognizing that equilibration takes place 
in three stages, each of which is characterized by its own time scale. These three 
scales are associated with the duration of a collision, the interval between successive 
collisions, and a macroscopic (hydrodynamic) interval. The gist of the argument 
is that when the values of these three relaxation times are well separated, the only 
pertinent variables which survive from one stage to the next are those whose values 
were unaltered by the relaxation process which took place during the previous stage. 
Hence, each stage is characterized by a "contraction" in the number of variables 
neded to describe the state of the gas. In the final, hydrodynamic stage the 
macroscopic variables (concentrations, fluid velocity, temperature) alone determine 
this state. 
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According to Bogoliubov, an initial state described by the d i s t r i b u t i o n f ( m ( t  = O) 
first passes through a period of "chaotization" which is completed in a span of time 
comparable to the duration of a single molecular collision. Within this brief interval 
all of the distributions functions f(") which appear in the BBGKY sequence (41) 
are assumed to reduce to functionals of the singlet distribution function f m  and to 
develop a dependence upon time which is exclusively that implied by these functional 
relationships. The rationale for this assertion is based upon the fact that all of the 
operators [,H I~)] except [,H m] depend upon the intermolecular forces and that 
these forces change substantially during the course of a collisional encounter. There- 
fore, of all t h e f  (~) on ly f  m can be expected to remain unchanged during the period of  
chaotization. This argument requires a slight modification in the case of polyatomic 
species, since the angles and phases associated with the internal degrees of freedom 
may change by significant amounts during an interval of time on the order of t s , 
the lapse between two successive molecular collisions. To be consistent, we should 
expect that during the "kinetic stage" which follows the period of chaotization the 
singlet distribution functions will depend only upon invariants of the free-flight 
motion. We have discussed these in detail previously. The equation which governs 
the "contracted" singlet function can be gotten by averaging the first of the BBGKY 
equations over all the rapidly varying angle variables. Because of the kinetic-stage 
functional dependence o f f  I") (and f(2) in particular) upon f(1), we can expect to be 
able to write a closed equation for the singlet function. This functional relationship 
is embodied in the assumption of molecular chaos which we discuss somewhat later. 

During the kinetic stage there is relaxation to a state of local equilibrium which 
is determined by the local values of the macroscopic fields. Further relaxation to a 
state of final equilibrium is governed by the equations of fluid dynamics. In this final 
stage the singlet distribution function will have a small nonequilibrium distortion 
due to gradients of the macroscopic variables. Indeed, this distortion is uniquely 
determined by the macroscopic state of the gas. The corresponding singlet distribution 
function is called the "normal" solution of the kinetic equation. The significance of  
the macroscopic variables is that they correspond to average values of summational 
invariants. These quantities, in sum for the colliding particles, are not altered by 
collision, and so their average values change only on the hydrodynamic scale of time. 

Let us now apply these conjectures concerning the approach to equilibrium to 
the further reduction of the kinetic equation (48). On the hemisphere fi �9 e21 < 0 
the centers of the two molecules are approaching one another, that is, the molecules 
are about to become engaged in a mutual collision. On the hemisphere fi �9 e2~ > 0 
the particles are moving away from one another on postcoUisional trajectories. 
Thus, we can rewrite (48) in the form 

~ef(1)(]) = R 2 f d2 f d2/~ Dt(Il �9 c21) f(2)(XlCl/1 ; x 1 -~- RII e2/2)post 

-- y(--fi �9 ezz ) f(2)(XzClI 1 ; x 1 q- Rfi eJ2)pre] 
(49) 

= R 2 f d2 f d2h ),(fi- c2z)[f(~)(x~ez/z ; xz § Rfi e.~I2)vost 

-- f(~)(x~cJ1 ; x~ -- Rfi e2I~)p,~] 
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where y ( x )  = x p ( x )  and where the subscripts "pre" and "post"  indicate that the 
arguments of the distribution functions correspond to pre- and postcollisional states, 
respectively. We now select a polar axis in the direction of ~ = s and denote by 
0 and r the polar spherical coordinates of the unit vector ft. It then follows that 
fi ' e2~ = c cos 0, d2~ - sin 0 dO d~,  and h �9 c21R ~ d2fz ~- R2c cos 0 sin 0 dO d ~  = c db, 

where b = R sin 0 is the magnitude and db = b db dd? the differential element of 
the impact parameter b = R(5 -- ~:e) �9 h. Therefore, (49) becomes 

~cf(1)(l) = f d2 f db c[f(2)(XlelI1 ; x 1 -~ RFI c212 ; t )post  

--f(~)(xleJ~ ; xl -- Rfi eeI2 ; t)pre] (50) 

with Rf i  = b -7- d (R  2 - -  b~) 1/~. 

Until now all has been rigorous, but now we introduce the first of the three 
approximations which will transform the identity (50) into the Boltzmann equation. 
Specifically, we assume that the "completed" collisions to which the first term of (50) 
refers are isolated binary events. According to this approximation, each postcollisional 
state (xlc111 ; xl -k Rfi cJ2), fi �9 c21 > 0, appearing in (50) is to be identified with 
the termination of a binary collision which began at t -- tc with the two molecules 
in the state (xl*cl*I~*; x~ q- Rfi* eJ.~*). (This "starred" state is precisely the same 
as that defined in the preceding section.) This approximation, which is virtually 
exact for short-range repulsive interactions, permits us to replace f!2)(xlc~I~; 
x z + Rfi c2I~ ; t)post of (50) with f(~)(xl*el*It*; xl* + Rfi* c~*I~*; t -- tc)pre �9 

The second and most crucial approximation is that of "molecular chaos." 
In particular, we assume that for precollisional states the pair density factors into 
the product of the corresponding singlet distribution functions, that is, f(a)(12)pre = 
f r e ( l ) f  (1)(2). This is the functional relationship between the pair and singlet distribu- 
tion functions which is appropriate to a dilute gas. 

Our final assumption has to do with "coarse graining" in time and space and, 
in particular, with the variations o f f  (1~ which occur during intervals of the order t~ 
and over distances of the order of R or 1 Xl* -- xl [ "~ c2zt~. We recognize these to be 
precisely the variations of which the Boltzmann distribution function of Section 2 was 
independent. Therefore, we neglect them here and obtain from (50) 

~ef(1) ( tX1)  ~ f d2 f db c[f(1)(t -- t~ , x'kl'k) f(1)(t - -  t~, x* -7- Rfi*2*) 

--fa)(t, x l ) f ( 1 ) ( t ,  x - -  R f i 2 ) ]  

f d2 f db c[f(~)(txl *) f(1)(tx2*) -- f(~)(txl)f(1)(tx2)] (5{) 

or  

~f(~)(1) f f f all' dZ d2 [f dbc 8O'-- 1")8(2'-- 2*)] 
• [f(1)(l') f(1)(2') -- f(1)(1) f(z)(2)] 
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where w(12] 1'2') is the transition rate defined by (12) of Section 2. Finally, by 
averaging over the rapidly changing angle variables ~z, we obtain (15) and (16) 
of the preceding section. 

To arrive at (51), which is formally identical to the Boltzmann equation (4), 
we have ignored the effects of three-body collisions and assumed a lack of statistical 
correlations prior to collision. Furthermore, since we have neglected variations o f f  (z~ 
over times comparable to the duration of a collision and over distances of the order 
of R or e2~tc, this function can indeed be identified with the density f which occurs 
in the Boltzmann equation. These approximations and the arguments of Section 2 
concerning the replacement of f~(1) with F~(1) are consistent with Bogoliubov's 
description of the "kinetic stage" in the approach to equilibrium. 

3.1. Approx imate  Theory for Impulsive Interactions 

The derivation of the Boltzmann equation which we have just presented is 
quite general and relies exclusively upon approximations which are statistical in 
nature, that is, the theory incorporates a rigorous treatment of the binary scattering 
process. However, this leaves us in a posture which, to say the very least, is a bit 
absurd, for we are unaware of a single instance of inelastic scattering (we reject the 
rough-sphere model because of its lack of realism) for which the differential cross 
sections and/or transition rates are actually available. To be sure, there do exist 
perturbation procedures which appear capable of generating useful approximations 
to these quantities but, at the time of this writing, no calculations of transport 
coefficients (except rotational and vibrational relaxation times) based upon these 
techniques have been reported. Indeed, the only cases for which extensive calculations 
have been performed are those where the inelastic scattering events were treated as 
if the colliding molecules were hard, nondeformable convex objects. (2,8,151 The 
approximations involved in these calculations are of a rather special sort. Thus, 
a collision between two rigid nonspherical objects may be "simple" in the sense that 
the entire event consists of a single impulsive encounter, or it may be complex 
"chattering" event consisting of a sequence of highly correlated impulses. Since 
collisions of the latter variety are so very difficult to analyze, it is the natural approxi- 
mation simply to ignore their existence. (The positivist's point of view is to interpret 
this neglect of chattering events as a refinement of the collision model.) The probability 
of occurrence of a chattering collision is dependent upon the degree of eccentricity of 
the nonspherical interactions and upon the values of various kinematic parameters 
such as moments of inertia and characteristic frequencies of vibrational modes. 
The neglect of chatter will, of course, be a less severe approximation for some values 
of these variables than for others. 

Although the assumption of impulsive molecular interactions is certainly 
somewhat less than realistic, there is little reason to suspect that it will lead to grossly 
inaccurate conclusions about fluids composed of relatively small, weakly polar 
molecules. This is particularly true at temperatures for which the value of kT  greatly 
exceeds the strength of the actual attractive interactions. But even if one is prepared 
to accept the assumption, he still finds himself confronted with formidible computa- 
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tional complexities. Because of these difficulties, only a very limited number of  rigid 
models have been studied in the past. However, recent advances (17) now make it 
possible to compute with comparative ease the bracket and brace integrals for a 
great variety of nonspherical species. We are presently engaged in exploiting this fact 
and in generating transport coefficients for molecules of several shapes. 

The Boltzmann equations which were derived earlier in this section are appro- 
priate for a theory based upon an exact treatment of chattering collisions. One has 
only to select the diameter (2R) of the "collision sphere" to be larger than the greatest 
linear dimension of either of the participating rigid bodies. However, we intend 
to neglect chatter, and so it is better to adopt a different approach: instead of defining 
the beginning and end of an event in terms of the penetration of the collision sphere, 
we formulate the theory in terms of the beginning and end of the very brief (to = 0 +) 
"contacts" between the surfaces of the two rigid bodies. Thus, in place of (50) we 
begin with the corresponding identity 

~cf(1)(1) = f d2 f d2S (k" g) f(2)(X 1; x + gz -- g2 2; t) 

= f d2 f dzS [y(k" g)f(Z)(x 1"; x + gl -- ~2 2 * ; t  -- 0+)vre 

- -  ~,(--k �9 g)f(2)(x 1; x @ gz -- g2 2; t)pre] (53) 

which first was derived by Curtiss and Dahler (15) and which one can also obtain 
directly from (47). Here d"S = d2k S(k, 13z, 132) denotes the differential element of 
the surface which is generated by the center of mass of molecule 2 as it slides over 
molecules 1 in such a way that the orientations 131 and 132 of both remain fixed. 
The vector k is the outward-directed unit normal to the surface of molecule 1 at the 
point of its common tangency (and contact) with molecule 2. 

The symbol ~ indicates the vector extending from the center of mass of molecule i 
to this point of contact, and g = c2z -i- (1~ -i �9 L2) • ~ -- (li -1 �9 L1) • ~1 is the relative 
velocity at impact of the points of contact on the surfaces of the two bodies; I i ----- I(fii) 
is the inertial tensor of molecule i. Since the collisional impulses are of infinitesimal 
duration, the positions and orientations of the bodies are unaltered by these events. 
If the surfaces of the molecules are smooth, impact reverses the algebraic sign of k �9 g, 
that is, k ' g  = - - k ' g * .  This results in the changes of molecular velocities and 
angular momenta given by the formulas ci* -- ei ~ k~K/m and L~* -- L~ = ~i • kiK, 
with k 1 = k, k2 = --k, and 

K = m(k . g)[l + �89 "1 : (gl • k)(gz • k) + I~ -1 :(g2 • k)(~2 • k))] -1 

To obtain the second form of (53), we have separated the first into pre- and 
postcollisional contributions and replaced each state in the second of these categories 
with the unique precollisional state which was its (immediate) precursor. 

As before, we obtain the Boltzmann equation by replacing each of the pair 
densities f~r~ in (53) with the corresponding product of singlet distribution functions. 
This is a less acceptable approximation here than it was previously, for some of 
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the states appearing in (53) can only occur as members of a chattering sequence. 
By following this factorization with a coarse-graining o f f  (1), we obtain 

with 

and 

= f d2 f deS [7(k. g) f(Z)(l*) f(1)(2") -- y ( - - k ,  g) f(z)(1) f(1)(2)] 
(54) 

= f f f  d2' d2 [w(1211'2')f(1)(l')f(e)(2') - w(l'2'{12)f(1)(1)f(1)(2)] 

w(121 1'2') = f dzSy(k  .g)  ~(1' -- 1") 3(2' -- 2*) (55) 

w(l'2' ] 12) = f d2S y(--k  �9 g) 8(1' -- 1") 3(2' -- 2*) (56) 

To prove the time-reversal property w(l'2' [ 12) • w(2Pl 2P21 2Pl' T2'), we write (55) 
in the more explicit form 

w(ezLl~l ; e2L2{3~ [ el'Lz'I~I'; c2'L2'132 ') 

= f d2S 7[k �9 (eel + t% • ~2 -- t~ • ~,)] a(131 -- 131') 

x a ( ~ 2  - ~ ' )  a~(a - G')(c* --  c') a~(Li* --  L / )  a~(t~* --  L~') (57) 

where co i ~ I~ -I �9 Li �9 The formula for w(cl'Ll'131'; c2'L./{3./[ c lL l~  ; c2Le{32) differs 
only in the algebraic sign of the argument of y. In (57) we now replace each velocity 
and angular momentum with its negative, that is, with its image under time reversal. 
The argument of y is then replaced with its negative and a term like 3a(Lz* -- LI') 
becomes 3a(l'-l* - -  ( - - L I ' ) ) ,  with LI* = Ll( - -c l ,  --c2, - -Lz,  - -L2 ,9~ ,  132, k) = 
--LI*, where the last equality is a consequence of dynamic reversibility. Consequently, 
33(L1" -- LI') --~ ~z(--LI* -- (--LI')) = ~3(L1" -- LI') and the theorem to be proved 
has been established. 

As a result of time-reversal invariance, we can prove the property of bilateral 
normalization and so reduce (54) to the standard form (52). To this same approxima- 
tion, the differential cross section is given by the formula 

= (c/c')  ( d'~k S(k, ~1, ~ )  y (k"  g) ~e(a' - a*) ~(Ii' - I1") ~(I~' ~r(cf[1'I2 t C/1/2) 12") 
, J  

(58) 

Although a far from trivial task, the evaluation of the transition rates and cross 
section defined by (55) and (58) is certainly within the realm of possibility. Indeed, 
for the special case of loaded spheres this already has been accomplished, as) 

To complete the approximate theory for impulsive interactions, one can, as 
before, perform the contraction f (1) -+F(1)  and introduce integral operators f 
and the related Fredholm kernels K. These quantities, as well as the transition rate (55) 
and the cross section (58), exhibit the same symmetry properties as do the corre- 
sponding quantifies associated with the exact treatment of the collisional events. 
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We speak of inverse collisions if, for each event (l'2'b')--* (12b), there exist 
impact parameters bz and ba' such that the "inverse" event (12b~)-+ (l'2'bz') is 
dynamically possible. One can prove without difficulty that the transition rate matrix 
w is symmetric for interactions which admit inverse collisions. However, it is only 
for loaded spheres (19) (with soft or rigid interactions) that the existence of inelastic 
inverse collisions actually has been established. Interactions which admit "pseudo- 
inverse" collisions are much more common. The pseudoinverse of (l'2'b') ~ (12b) 
is the event (1261) --> (]'2'b1'), where the states i and T differ only in the algebraic 
signs of the angular momentum L~. Pseudoinverse events are known to exist for 
the rough-sphere and loaded-spherocylinder models. They also occur for all rigid 
and convex, smooth bodies and for their soft-potential analogs. (~~ In the cases 
just mentioned it is more natural to describe the collision events, both direct and 
inverse (or pseudoinverse), in terms of k, the direction of the common normal to 
the molecular "surfaces" (contours of constant interaction energy (~~ at their point 
of mutual contact, than in terms of the impact parameter b. 

4. C O N C L U D I N G  REMARKS 

Throughout this paper we have dealt exclusively with classical mechanics, 
but there is no difficulty whatsoever in transcribing the phenomenological theory 
of Section 2 into the language of quantum mechanics. In place of the variables 
It = (qiPi) we introduce v = (~iL~Mi), where Li and M i ,  respectively, are the 
quantum numbers associated with internal angular momentum and its projection 
and where ~ is the set of whatever additional quantum numbers are needed to 
fully specify the state of an individual molecule. The kinetic equations for the 
distribution functions f~(txcv) are given by (4) and (8) of Section 2 provided that 
one replaces the integration j" di (...) =-- .[~[ dgei dI~ (...) with the corresponding opera- 
tion ~2~ .[ d3ci("'') and the cross section ~(c'I1'I2'  --* elxI2) with cr~(c'vl'v2' ---> cviv2). 

To obtain the isotropic approximation, we assume that the distribution functions 
are independent of the projection quantum numbers and so replace s  with its 
"average," c~-tF~(txeJ), where co = 2L + 1 is the degeneracy of the molecular state 
with rotational quantum number L and where j -- (~L). The kinetic equations then 
become 

(~  + cl �9 v + ...)F~(e~J0 

= 2 2 Z f 
J~ '  r162 J2 

t p • [(oJ1 co2/co1%, F~(cl '~')  F,(c2'J2') -- F~(Ca~) FB(e~J2)] (59) 

where the degeneracy-averaged cross sections 

% ( c N J ~ - ~  e N ' J ; )  = (1/~o~Ol) Y : " Z  %(e~l~ -~ c'~1'~;) 
MIM2MI"M 2" 

satisfy the condition of averaged balance, 

~o,%'r ~ e N N )  = ~o~%~%o(eNA-~ c 'N'N')  
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If we assume the distribution to be nonpolar, then ./'~(txcv)~ �89162 where 
h = I M l is the magnitude of the projection quantum number. In place of (59) one 
then obtains kinetic equations which contain the average of the cross section over 
both algebraic signs of the projection quantum numbers. 

The linear integral operators associated with the isotropic and nonpolar 
approximations are both self-adjoint, but the operator associated with the unaveraged 
cross sections will not, in general, exhibit this property. The sets of kinetic equations 
which correspond to these three cases are all of the form first proposed by Wang 
Chang and Uhlenbeck. (~ They argued that molecules in different states of excitation 
could be treated as distinct chemical species and that the kinetic theory for a 
polyatomic gas should not, therefore, differ significantly from that for a gas mixture 
of structureless species which undergo binary reactions ai + b~. = ai, + b / .  There 
was Some criticism of the Wang Chang and Uhlenbeck equations by those who 
thought that kinetic equations of the form (4) could be derived from a "master 
equation" of the form (1) only if the principle of detailed balance were applicable. 
However, we have seen that time-reversal invariance (bilateral normalization) alone 
is sufficient for this purpose. A more serious and lasting defect of the Wang Chang 
and Uhlenbeck equations was discovered by those who attempted to derive them 
directly from the Schroedinger equation. (3,4,12~ The origin of this defect is the natural 
spatial degeneracy of the internal eigenstates of rotating molecules. To illustrate the 
problem, let us suppose that at one instant the microstate of the system could be 
described as a collection of wave packets, each representative of a molecule in some 
definite internal state and with a prescribed momentum. Each time two of these 
molecules collide, scattered waves emanate from the point of their impact. These 
waves eventually become spatially resolved into distinct packets--an elastic com- 
ponent which recedes from the point of impact at the same speed as before collision, 
and various inelastic components whose speeds generally differ from the precollision 
values and depend specifically upon the postcollisional states of the two molecules. 
The time required for this resolution to occur is dependent upon the width of the 
initial packet and, more particularly, upon the group velocities associated with 
the different components of the scattered wave. If the resolution is complete before 
either of the scattered particles suffers its next collision, then the situation is relatively 
uncomplicated. However, the group velocities associated with the several components 
of a degenerate postcollisional eigenstate are all the same and so, in this case, the 
free streaming of the particles does not result in spatial resolution of the components. 
The phase relationships among the components remain unchanged until the next 
collision. Thus, it is very reasonable to expect that the correct quantum-mechanical 
kinetic equations will involve the phases as well as the moduli of the scattering 
amplitudes. Since the (quantum) cross sections which appear in the Wang Chang 
and Uhlenbeck equations depend only upon the latter, we should not be surprised 
to find that they are of limited validity. 

The generalization of the Boltzmann equation derived by Waldmann ~3) and 
Snider ~4~ is free from this criticism. According to their more rigorous theory, the 
distribution functionf~(txeJM) must be replaced with a matrix f~(txeJ)MM'. If one 
assumes this matrix to be diagonal, that is, if f~(txeJ)MM' ~ f~(txcJM)3~M', 
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then the equations of Waldmann and Snider reduce to those of Wang Chang and 
Uhlenbeck. Although there surely are some situations for which this approximation 
is inadequate (particularly as regards spin relaxation and diffusion), it seems over- 
whelmingly likely that it will have a negligible effect upon the numerical values of 
the usual transport coefficients and relaxation times. 

A P P E N D I X :  T H E  " N O R M A L  S O L U T I O N "  
OF T H E  B O L T Z M A N N  E Q U A T I O N  

One among the many uses to which the Boltzmann equations can be put is 
that of providing theoretical estimates of phenomenological coefficients such as 
those of viscosity, diffusion, and thermal conductivity. Here we outline the procedure 
for accomplishing this objective. The approach we shall use is an adaptation of one 
to which we were introduced by Professor Duane Condiff of the Carnegie-Mellon 
University. ~22~ With no significant loss of generality we may assume the molecules 
to be diamagnetic and that F ( =  H) is a static magnetic field. The Boltzmann 
equation (19) then can be written in the form 

~ + c~ "~-x + ec--~ + g~ • H �9 F~(I) 

with 

x [m~(i') Y'~(~') - r ~'~(~)] 

: f .  f a3 2 a4' dy2, c,, 
• [r TB(2' ) -- q)~([) T~(2)] (A.2) 

and where ~ = TPf l i .  Some solutions of these equations exhibit properties which 
are characteristic of one or another of the stages involved in Bogoliubov's description 
of the approach to equilibrium. To demonstrate this, we examine the Boltzmann 
equations from the point of view of dimensional analysis. We begin by identifying 
several characteristic parameters of the fluid: 

c~, a speed, (kT/m,)*/2, associated with the species y and with a reference 
temperature T; 

c ~ ,  a speed, (kT/tz~) ~/~, associated with the relative motion of species ~ and/3 

g~, a mean concentration for species 7; 

Aj = 1/~R2; a free path length associated with the mean concentration n 
(assuming the ranges of all molecular interactions to be about the same) 

l, a representative "macroscopic" length, e.g., size of apparatus or P/[ VP[ 
where P denotes some macroscopic field; 

r, a characteristic interval of time; 
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and then define the dimensionless quantites 

x* = x/1; t* = t/r; ez* = el/e~ ; e*  = e2z/eB~ ; L~* = Lz/h 

~.*~ = ~d [&.~  ; ~ = ( v ~ / R ' )  ~ ; o%(i) = ( c~%/~)  F~(Y) 

where ~ = S a j ~  = ~ f djo*.  
Since there is no "natural"  unit of  time (except for the periods of  the timelike 

variables ~, and we have "discarded" these), T must be constructed f rom the other 
quantities which are at our disposal. There are three possibilities, R]c~, A/c~, and 
l/c~, with corresponding orders of  magnitude of 10 -a~ sec, 10 -9 see, and 10 -n see 
or greater. The approximations used in the derivation clearly imply that the Boltzmann 
equations are inapplicable to the shortest of  these three scales of  time, that is, to 
times of the order of  the duration of Bogoliubov's "initial period." I f  we select ~- 
equal to the kinetic time scale, rk~n = A /e , ,  (A.1) then becomes 

4 ( 1 )  4- ~ [ .~ I o%]* (A.3) = - 0 , :  x I~ �9 o-L T ,  
B 

with E = A/I, 

x [q~,(i') ~ ( 2 ' )  - -  ~,( i )  zbo(~)] (A.4)  

and where F~ '~* = IF~)/c, 2 ~ lm~F~*)/kT is the energy, in units of  the thermal mean, 
which is required to displace a molecule through a distance 1 against the field of  
force F~ '). We shall assume that F~ ")* is of  the order unity. Finally, 0 = ~on/oo, is 
the ratio of  the (proton) Larmor  frequency, o) n = eH/2m,c, to the collision frequency, 
toe  = l / T k i n  �9 

With ~- chosen equal to ~'hy ---- t/c, we obtain in place of  (A.3) the equations 

( ' 
0~ + c1" �9 Ox* + eeZ*- 4 ( 1 )  

o~(1) 4- ~ [~ locB]  * (A.5) = - 0 ~  x gI �9 ~ - ~ ,  

In both cases it is reasonable to expand the dimensionless distribution functions in 
the perturbation series 

where the value of ~ = Af/l can vary from as much as 10 -a to as little as 10 -7 or 
even less. 

8 2 2 1 1 / 4 - 3  
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The dimensional analysis serves to establish the relative magnitudes of the 
various terms which contribute to the Boltzmann equations. On the scale of time 
to which the equations (A.3) are appropriate, spatial variations of the singlet distribu- 
tion functions can be ignored compared to variations with time. Consequently, 
in first approximation, the Boltzmann equations reduce to equations descriptive 
of the rate at which collisions are effective in establishing local Maxwell-Boltzmann 
distributions. Interactions with the magnetic field will contribute to this process 
only if 0 = co~/~o~ is of the order of unity. 

In contrast to these homogeneous relaxation phenomena, variations of the 
distribution functions recorded on the hydrodynamic scale of time [t/'rhr = O(1)] 
are to be described in terms of the flows of energy, momentum, and mass which 
occur in response to imposed gradients of temperature, velocity, and concentration. 
The influence of the magnetic field will be significant only if it is so intense or if the 
gas pressure is so low that 0 --= co~r/oJ ~ = O(1). 

Now that the relative magnitudes of the terms have been established we can 
dispense with the dimensionless quantities and write in place of (A.3) and (A.5) 

~F~(1) ~- E cz- ax + _ ~  acz 

and 

( a F(e). 8 )F~(1) 

= --0B~z x H .  ~L~ F~(1) + ~ [F~ I F~]~ 

(A.3') 

= --0g~ x H .  ~ F~(1) + ~ [F= I F,~],. 
B 

(A.5') 

respectively. In these equations E (and 0) gerveff simply as a "marker" which is to be 
set equal to unity after the perturbation expansion 

L = pEol + E~11 + ~ . . .  

has been used to order the successively smaller contributions to the distribution 
function. In what follows our concern will reside exclusively with the hydrodynamic 
scale of time and with the corresponding "normal solution" of the Boltzmann 
equation. It is consistent with Bogoliubov's hypothesis (and with all else we have 
stated in connection with this stage in the evolution of the system) to assume that 
during the hydrodynamic stage the time dependence of the functions F~ is governed 
exclusively by the time dependence of the temperature, fluid velocity, and species 
concentrations, and that the equations of motion of each of these variables p is 
expandable in a series 8tp = 80P + E81P + E~8~P + ""- We later verify that the 
functions 8~p are determined uniquely by the criteria that the equations for the 
functions F~ (~) be soluble. The solution of the Boltzmann equation generated by this 
prescription is the normal solution of Chapma n and Enskog. 

It is readily verified that the functions/~0) satisfy the set of nonlinear equations 

O 



The Boltzmann Equation for a Polyatomic Gas 555 

and that the solutions of these equations are the Maxwell-Boltzmann functions ~ 
of (27). If we then select the values of the coefficients n~,o, To, and u o to coincide with 
those of the local concentrations, temperature, and fluid velocity, the distortions 
F~ ~) --= ~ ~), k > 0, must satisfy the subsidiary conditions 

f d] f~J(i) = o, Z f dl  F~*](I) re,C1 = 0 
c~ 

dl F~ (1)[�89 z + e . (~ ) ]  = 0 
c~ 

(A.6) 

and the sequence of linear, inhomogeneous, integrodifferential equations 

~0 ~ = --~0al((~[1!) (A.7) 

~o ~ + 8z ~F~(]) --  ~ [F~llIF~1111 ----- --g)~l(q ~[e]) 
B 

(a.8) 

with 

0 F}O. 0 
}o = 0o + ca " ~ -  + eel 

~aX(1/J) E I ~ i  X H" ~ 1  W ~F~(T) + ~ n~n~lP~)(tI r) 
B 

(A.9) 

and where f'~o) is defined by Eq. (29) of the text. 
In order for solutions to exist, the inhomogeneous portions (left-hand members) 

of these equations must be orthogonal to all solutions of the associated homogeneous 
adjoint equations, ~0~I(X ) = 0. Since the latter consists of 1, m~el, and �89 2 + q(1), 
(A.7) will be soluble if and only if 

f di  [~o %(i)] = 0 

and 

f dl  m~Cx[~o ~ = ~, f ell [�89 ~ -t- q(l)][0o %(])]  -- 0 
a c~ 

These conditions determine ~0T, ~0n~, and ~oU uniquely and permit us to express 
go ~ in the explicit form 

n ( 2/~T ~*/= 
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where Wi = (m~,/2kT) i/~ C1, e~*(1) = e~,(1)/kT, and Cv = ~nk -}- ~ nBr Finally, 
e-~* = i~,/kT and ~ --= d g J d T  are defined in terms of the mean internal energies, 
g.(T) = Z 2  z f d j E , ~ ( J )  exp[ - - e~ (J ) / kT] ,  and 

d~---= Vx~ + ( x = -  w~) V In p -  p-iw~ (pF~ ( " ) -  ~ poF~ (~)) 
B 

with x~ = n~/n, w~ ---- poJp, and p = nkT.  
Similar considerations apply to the functions OkT, ~n~,  ~ku for k > 0 and so 

to the construction of the inhomogeneous portions of the equations for the higher- 
order distortions q,~l. 

Since g) is linear, the functions q~l  must be of the form 

r = - - ( 2kT )  i/2 A~ . V_TT _ B~ : ~ - -  D~V . u -1- n E C(~) " d, (A.11) 
T 

where B~ is a symmetric and traceless second-rank tensor and where A, ,  B,, C~ ), 
and D~ depend upon the dynamical variables W and J of a molecule of the species a. 
It can be verified that these functions satisfy the equations 

m2t/2 ~ ~ q- e~*(T) -- ~ -- ~,*)] = g)~t(A) (A.12) 

O 

~ ---- ~,z(B) (A.13) 

~ q- X) -1 x(W12 - -  3 )  - -  [%*(1) -- ~=*]} ----- ~ ) a i ( n )  (A.14) 

~ 1/2 Wa(3~a -- 3~)] = D,z(C (~) -- C (a)) (A.15) 

with X = Z nBg~/(3nk/2) �9 
In the absence of the magnetic field the solutions of these equations are related 

to the coefficients of diffusion, thermal diffusion, thermal conductivity, and shear 
and bulk viscosity by formulas given in Appendix E of the paper by Condiff et a/. (sa) 
The modifications arising from the influence of the magnetic field have been discussed 
elsewhere. (9,23) 

Throughout much of this paper the external field dependence of the collision 
matrices and cross sections have been ignored, either implicitly or explicitly. Among 
the consequences of the applied field F are the dipolar energy shifts, e~ --~ e~ -- ~ .  F, 
and the corresponding replacement of the factor S ( E -  E'), which occurs in w,o, 
with 8{(E -- E')  - -  [g~(1) + g~(2) -- g,(l ')  -- g,(2')] �9 F}. Furthermore, the differen- 
tial cross sections may themselves depend explicitly upon the strength of the external 
field. To first approximation the field alters the transition rates by an amount 
proportional to p . ' F / k T .  In most cases this affects the values of the transport 
coefficients far less than do the field-dependent "streaming terms" occuring on the 
left-hand side of the Boltzmann equation. (This is principally a consequence of the 
fact that ts >~ to .) The earlier parts of this appendix are based upon the implicit 
assumption that this is the case. 
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There are, however, situations where it is impor tant  to take the level shifts into 
account,  at least partially. For  example, in the theory o f  spin relaxation and diffusion 
one is interested in the displacement o f  the magnetizat ion f rom its equilibrium value, 
but  is not  concerned with field dependence o f  the diffusion coefficient or spin relaxation 
times. Under  circumstances such as these it is convenient to express the distribution 
function in the mannerF~ = ~ + q~), where ~ ~ ~ exp[-- f i ( �89 2 + ~ - -  g~-F)]  
is the local Maxwel l -Bol tzmann distribution appropriate  to a system immersed in 
a static field F. The integrand of  the Bol tzmann collision term then can be written 

w~e[F~(i') Fe(2') - -  F~(I) F~(2)] 

= wff~[~ ') ~ ') - -  ~ F(i) ~ 

F OFF(i) OF F(~)[r + r - -  q~(i) - -  ,k~(2)] + 0(42) -~ Wat~ 

F F - -  with w~ = w~(12 I i '2 ' ) .  The first term is zero. The second is first order in the 
deviations f rom equilibrium. I f  our  interest is confined to deviations which are o f  
first order either in F or  gradients o f  the macroscopic  fields, that  is, if we choose to 
ignore first- and higher-order field contributions to the dissipative coefficients, 

i~ ro F r~ Thus, r with w~ B ~ (w J r =  0 and ~ r with ~ ~ t ~ Jr=0 then we can replace w~ 
a first-order theory of  this sort can be based upon  the expression F~ = ~ -k ~ )  
and the approximation 

w~[F~(i ') Fo(2') - -  F~(i) F~(2)] ~ w~e ~ ~162 § r - -  r - -  r 
(A. 16) 

The application o f  this approximation to spin and thermal relaxation will be presented 
elsewhere. 
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